Language

Mostrando entradas con la etiqueta infinito. Mostrar todas las entradas
Mostrando entradas con la etiqueta infinito. Mostrar todas las entradas

sábado, 10 de enero de 2015

La Igualdad de Euler

Leonhard Euler fue un matemático y físico suizo que vivió en el siglo XVIII. Es considerado uno de los grandes genios de la historia de la Ciencia. A él le debemos la existencia del número que lleva su nombre, el número e. Si quisiésemos hablar de todo lo que hizo, esta entrada se haría interminable, por lo que hoy me centraré en la famosa Ecuación de Euler:


Vamos a intentar demostrar esta identidad de gran belleza a partir de las Series de Taylor y Maclaurin, que son representaciones de una función (como el seno, el coseno o una exponencial) a partir de la suma de infinitos términos. Por ejemplo: sen 45º se puede escribir como la suma de infinitos sumandos que converge hacia el valor concreto del sen 45º. Las series que necesitaremos son las siguientes:


También necesitaremos algo de números complejos. Recordemos que un número complejo z puede escribirse como z = a + bi, siendo i la unidad imaginaria (raiz cuadrada de -1). Podemos escribir lo siguiente:


Ahora intentemos escribirlo mediante las Series de Taylor:


Podemos observar que hay algunos términos que poseen la unidad imaginaria i, pero otros no. Vamos a llamar A a la suma de los términos que incluyen i, y B a la suma de los que no:


Siendo un poco observadores, podemos escribir lo siguiente:


Ahora vamos a igualar b al número pi:


Con lo que queda demostrada la Identidad de Euler, dotada de una belleza espectacular y de misterio. Relaciona los cinco números básicos de las Matemáticas de una forma asombrosamente básica.

No sabemos cuál es su significado, pero sabemos que es verdad: una verdad eterna y bella, por lo que muchos la consideran la igualdad más importante de las Matemáticas.


Podemos tomar logaritmo neperiano a ambos lados y observar cuánto vale el logaritmo neperiano de -1:


Si os ha gustado la entrada matemática de hoy, os invito a comentar y compartirla. 
Un saludo, nos vemos en la próxima!



domingo, 24 de agosto de 2014

Resolviendo la paradoja de Aquiles y la tortuga

Zenón de Elea fue un filósofo griego muy conocido por plantear numerosas paradojas relacionadas con el movimiento. De entre todas ellas, la más famosa puede que sea la de Aquiles y la tortuga. 

Aquiles decide echar una carrera a una tortuga. Ya que corre mucho más rápido que ella, y seguro de sus posibilidades, le da una gran ventaja inicial. Al darse la salida, Aquiles recorre en poco tiempo la distancia que los separaba inicialmente, pero al llegar allí descubre que la tortuga ya no está, sino que ha avanzado, más lentamente, un pequeño trecho. Sin desanimarse, sigue corriendo, pero al llegar de nuevo donde estaba la tortuga, ésta ha avanzado un poco más. De este modo, Aquiles no ganará la carrera, ya que la tortuga estará siempre por delante de él.



Todos sabemos que Aquiles ganará de sobra la carrera, igual que pensaba Zenón. Zenón planteó 40 paradojas de este estilo, debatiendo sobre el espacio, el tiempo y el movimiento. Proponía estos ejercicios mentales para reducir al absurdo las teorías de que la suma de infinitos números tenga que dar infinito. 

Si la suma de infinitos sumandos siempre fuese igual a infinito, Aquiles nunca ganará la carrera, pero esto matemáticamente y físicamente no es así. 

Supongamos que la velocidad de la tortuga es de 1 m/s, la velocidad de Aquiles es de 10 m/s y la ventaja inicial es de 100 m. En solo 10 segundos, Aquiles habrá alcanzado el punto desde el que sale la tortuga, y esta habrá avanzado 10 metros más. Esos 10 metros los recorre Aquiles en 1 segundo, pero la tortuga habrá avanzado 0,1 metros más...y así sucesivamente. Lo que plantea la paradoja es que 10 + 1 + 0,1 + ... da como resultado infinito, pero eso es incorrecto.

Cada vez, Aquiles tarda 10 veces menos en recorrer el trozo que lo separa de la tortuga. Esta fórmula nos puede ayudar a conocer todos los tiempos empleados (progresión geométrica decreciente):

Sucesión de tiempos empleados
expresada en segundos
Aplicando una fórmula que no vamos a demostrar ahora (fórmula de la suma de los infinitos términos de una progresión geométrica decreciente), podemos hallar la suma de esos tiempos. La demostración se realizaría restando a la suma de todos los términos, la suma multiplicada por la razón, pero por comodidad no lo vamos a hacer.

Como vemos en la imagen superior, la suma de 10 + 1 + 0,1...da como resultado 11,1 segundos. Aunque haya infinitos sumandos, el resultado es finito. Esto demuestra que Aquiles alcanza a la tortuga y lógicamente gana la carrera.

Podemos resolverlo también utilizando las leyes del movimiento, ya que conocemos las velocidades de ambos corredores la diferencia de posiciones. Igualando las posiciones conseguimos despejar el tiempo transcurrido en cruzarse.


Por lo tanto, una suma de infinitos términos decrecientes puede dar un resultado finito, como en este caso.

Un saludo, nos vemos en la próxima. No os olvidéis de compartir esta entrada!