Language

Mostrando entradas con la etiqueta espectros. Mostrar todas las entradas
Mostrando entradas con la etiqueta espectros. Mostrar todas las entradas

lunes, 28 de julio de 2014

La expansión del Universo

En las primeras décadas del siglo XX ya se conocían muy bien los espectros de emisión de los diferentes elementos. Un espectro de emisión es el conjunto de longitudes de onda que emite un elemento cuando uno de sus electrones disminuye de orbital, tal y como podéis recordar en mi entrada sobre las Auroras Polares.

Podemos imaginar que un electrón de un átomo es un libro. Podemos subirlo de estante o bajarlo, y al hacerlo, emite o absorbe energía. Un ejemplo son los fuegos artificiales de colores, hechos con elementos cuyos espectros se corresponden con los colores de la pirotecnia.

El color verde se consigue gracias al Bario

En esta página encontraréis los espectros de todos los elementos de la tabla periódica.

Como el Sol está formado por diversos elementos, si descomponemos su luz en colores podremos obtener en qué longitudes emite y por tanto sus elementos constituyentes, ya que cada elemento emite unas longitudes de onda correspondientes y bien definidas, tal y como establece el modelo atómico de Bohr.

Lo que hizo Edwin Hubble en la primera mitad del siglo XX es comparar el espectro del Sol (el Sol ni se aleja ni se acerca de nosotros) con el de un tipo especial de estrellas llamadas cefeidas. Estas estrellas tienen un brillo característico y regular, como un faro. Si conocemos su brillo, podemos saber la distancia a la que se encuentra, porque cuanto más lejos esté, menos brillará. 


La luz que emite el Sol es la de la izquierda, y la de una cefeida, la de la derecha. Se puede observar que las líneas negras están más hacia arriba en la cefeida que en el Sol, el conocido corrimiento al rojo. Esto, tal y como vimos en la entrada del Efecto Doppler, significa que esa cefeida se aleja de nosotros, al igual que la galaxia que la contiene. Como se aleja, las ondas que nos llegan de ella cada vez recorren más espacio, lo que se traduce como un aumento de la longitud de onda, que es lo que vemos comparando los espectros.

Hubble comparó el espectro de muchas cefeidas con el del Sol, y desarrolló la famosa ley de Hubble. Esta ley dice que cuanto más lejos está una galaxia, más rápidamente se aleja de nosotros. La desarrolló viendo cómo cambiaban los espectros entre unas cefeidas más cercanas y otras más lejanas, ya que el grado de corrimiento al rojo es proporcional a la distancia que nos separa de la cefeida.

En términos matemáticos, la ley dice que D = v/H, donde D es la distancia, v la velocidad de alejamiento y H es la constante de Hubble (H = 2,5·10E-18 Hz). Esa fórmula implica que cuanto más lejos está la galaxia, más rápido se aleja.

Y lo más importante es que todas las galaxias se alejan las unas de las otras entre sí, igual que los puntitos del globo de la imagen de abajo cuando la niña lo infla:


Cuando Hubble descubrió que el Universo se expandía aceleradamente, surgieron bastantes cuestiones: ¿Qué hace que se expanda? Y si cada vez es más grande, antes debió ser más pequeño. ¿Qué hubo al principio? ¿Cómo será el fin de nuestro Universo? 

Todas estas cuestiones las intentan responder los físicos cada día en laboratorios, aceleradores de partículas como el CERN o mediante la física teórica. Hablaremos de ellos en entradas posteriores. 

Para conocer más sobre cómo sabemos que el Universo está expansión, visita la entrada del Efecto Doppler Relativista.

Un saludo!

martes, 25 de febrero de 2014

Física Cuántica y la 'Doble Ranura'

¡Buenas amigos!
Como prometí la semana pasada, hoy os traigo una extensión de mi entrada anterior, la cual os recomiendo leer antes para entender con claridad la de hoy: La Ciencia como nunca: 'La doble ranura'

Una vez entendido todo lo anterior, vamos a ver qué pasa cuando en vez de lanzar canicas o bolitas por las ranuras, lanzamos electrones. Al ser partículas, cabe esperar que se formen dos franjas, ¿no? Pero como ya intuiréis, no va a ser así. Al bombardear con electrones, ¡se forma un patrón de interferencia como en las ondas!

Esto ocurre básicamente porque la materia también puede tener función de onda, inversamente proporcional a su masa. Cuanto más masa posea una partícula, menos se comportará como una onda. Los electrones tienen una masa insignificante, por eso tienen función de onda, aunque pequeña. Nosotros mismos funcionamos también como onda, pero al tener una masa 'infinitamente' mayor, ese comportamiento ondulatorio es insignificante, por no decir 0.

Esta es la pantalla donde se registraron esos electrones cuando pasaban por la doble ranura:

Experimento de la Doble Ranura aplicado a electrones.
Pantalla donde podemos ver el patrón de interferencia formado por los electrones


El experimento ha sido realizado varias veces a lo largo de la historia. Primero creyeron que se trataba de un error: pensaban que los electrones rebotaban entre ellos y por eso parecía que quedaban en forma de interferencia. Repitieron el experimento lanzando electrón a electrón y vieron que seguía ocurriendo lo mismo.

Intentando demostrar esto mediante las matemáticas, llegaron a la conclusión de que el electrón debía pasar por las dos rendijas a la vez, pero ¿cómo es esto posible?

Entonces decidieron poner detectores en las rendijas para comprobar si era verdad esto. Misteriosamente, ahora ¡cada electrón iba por una rendija y no por las dos!, y en la pantalla se formaban dos franjas...increíble, ¿no?

Cuando no miramos a los electrones por donde van, se comportan como ondas. Cuando queremos observarlos para conocer su trayectoria, ocurre algo y dejan de funcionar ondulatoriamente y se comportan como partículas.

La razón cuántica de este fenómeno lo explica el Principio de Superposición. Básicamente nos dice que una partícula, en este caso el electrón, puede poseer para una determinada magnitud (en este caso posición) todas sus posibilidades. Al ser medidos u observados, se dice que la superposición se colapsa, y solo observamos una de todas las posibilidades. Un ejemplo podría ser el siguiente: Al cojer una carta de una baraja y ponerla boca abajo sin mirarla, según el sentido común es una sola carta, ¿no? Pero según este principio, cuando no la miramos se están dando todas las posibilidades: ¡SON LAS 40 CARTAS A LA VEZ! Una vez que miramos la carta, se colapsa la superposición y se eliminan 39 posibilidades. Solo queda la carta que vemos. Erwin Schrödinger propuso una paradoja para entender esta teoría, la cual puedes leer en el siguiente enlace: El Gato de Schrödinger. Una curiosa frase pronunciada por el físico británico S. Hawking fue "Cada vez que escucho hablar de ese gato, empiezo a sacar mi pistola".

Básicamente eso es lo que ocurre en el experimento con los electrones. El electrón pasa por las dos ranuras al mismo tiempo, como ocurría con las ondas. De este modo, se formaría el patrón de interferencia. Para acabar, os recomiendo ver este vídeo que explica muy bien y resume el contenido de esta entrada:


Puede parecer que todo esto es mentira porque no encaja dentro de nuestro sentido común, pero hay muchos experimentos reales que se basan en este principio, y que son muy curiosos porque la materia se comporta de modo muy extraño. Es más, absolutamente TODOS los experimentos para poner a prueba la Teoría Cuántica han funcionado.

Este Principio de Superposición tiene mucho que ver con el Efecto Zenón Cuántico, el cual puedes leer en el siguiente enlace: Zenón Cuántico. Básicamente explica que podemos modificar un experimento cuántico con el simple hecho de observarlo. Uno muy curioso fue realizado en 1990 en el Instituto tecnológico de Colorado. Consistía en observar el nivel de energía de los electrones en unos miles de iones de berilio. Desde que los electrones se encontraban en su estado fundamental (mínima energía), hasta su máxima energía, pasaban 256 milisegundos. Mediante microondas excitaban esos electrones, y al cabo de esos 256 milisegundos, el 100% de los iones se encontraban en el nivel superior de energía. Al realizar la medición en la mitad del proceso, y después al final, resultó que solo el 50% de los iones se encontraron excitados. Esto se debe a que el electrón no se puede encontrar entre medias: solo existen dos posibilidades, o arriba o abajo (modelo atómico de orbitales). Si no medimos entre medias, siempre los encontraremos arriba; pero si medimos a medias del experimento, dado que no los podemos ver a mitad de camino, unos irán hacia arriba y otros hacia abajo. Esa es la razón por la cual solo el 50% de los iones se encontraban en ese estado. Este experimento fue otro argumento a favor de la Mecánica Cuántica.

Os recomiendo los libros 'La Puerta de los Tres Cerrojos' y 'Desayuno con Partículas', ambos de Sonia Fernández Vidal, una importante divulgadora científica especializada en Mecánica Cuántica. En sucesivas entradas hablaré del Efecto Fotoeléctrico, la otra cara de la moneda, la parte corpuscular de las radiaciones electromagnéticas.

Gracias por echar un vistazo a esta entrada,
Un Saludo para todos!
Hasta la Próxima!

domingo, 9 de febrero de 2014

Aceleradores de Partículas

Un acelerador de Partículas es una máquina capaz de hacer mover partículas a velocidades cercanas a la de la luz. Esto se consigue de diversas maneras, pero la más usual es mediante atracción y repulsión electrostática. Hay diversos tipos de aceleradores: los hay circulares, como el del CERN en Ginebra; y los hay lineales, como el que visité el verano pasado y dónde pasé una semana, del que voy a hablar.

¿Dónde se encuentra?

El acelerador se encuentra en Madrid, en la Universidad Autónoma. Pertenece al Centro de Microanálisis de Materiales. Se halla en un enorme edificio, con muros de hormigón de más de 1m de espesor, protegiendo la zona de cualquier peligro. Aquí podéis conocer más sobre este acelerador: Acelerador de Iones del CMAM.

Centro de Microanálisis de Materiales de la Universidad Autónoma de Madrid


¿Para qué sirve?

Su finalidad es el análisis de obras de arte, síntesis de nuevos materiales e investigación científica. En el caso de los circulares, su uso fundamental es el de colisionar partículas para conocer de qué está hecho todo. Gracias a ellos, en 2013 se demostró empíricamente la existencia del Campo de Higgs, postulado por Peter Higgs 50 años atrás. Otras veces para observar cómo fue el Universo en sus inicios. En posteriores entradas hablaré de este tema. En el de Madrid, el objetivo es bombardear con una haz de iones un material. Los iones se aceleran y dirigen hacia la muestra, y dependiendo de la intensidad de rebote, estaremos tratando con unos elementos u otros. Esta técnica, llamada RBS, es la más común.

Funcionamiento

Esquema del funcionamiento de un acelerador lineal electrostático
Esquema de un acelerador lineal tipo tándem

El proceso comienza en la parte de la izquierda. Podemos observar dos fuentes de partículas, una para gases y otra para sólidos. Mediante distintas técnicas, arrancamos esas partículas y las ionizamos, es decir, las cargamos positiva o negativamente para poder atraerlas hacia la muestra.
Una vez ionizadas (normalmente se usa Cesio), mediante el uso de campos magnéticos, atraemos el haz de iones hacia la parte azul del dibujo. Aquí se ven atraídas por un voltaje de 5 millones de voltios hacia el centro del tanque. Una vez allí, mediante el uso de Nitrógeno, las cargamos positivamente, por lo que la fuerza que antes las atrajo, ahora las repele. De esta manera conseguimos acelerar nuestro haz a una velocidad de, aproximadamente, 10.000 km/s. Una vez que el haz sale de la zona pintada de rojo, lo desviamos mediante electroimanes de 4 polos y concentramos todas las partículas en un haz de una superficie como la de una moneda de 1 céntimo. Dirigimos el haz a la muestra, y mediante detectores conseguimos saber la relación en masas de las partículas que rebotan y las de la muestra. Así podemos saber de qué está hecho aquello que hemos bombardeado.

Aquí se aceleran los iones a velocidades cercanas a las de la luz
Tanque del acelerador

Vía para análisis de materiales estándar. Entre otras estaba la nuclear.
Una de las vías donde se depositan muestras para su análisis

En el interior del acelerador hay anillos, donde se aplica el voltaje deseado. Debido a esa gran cantidad de energía, es necesario ocupar el espacio entre esos anillos con un gas muy denso, a una presión de 7 atmósferas para evitar descargas eléctricas. El coste de mantener el acelerador funcionando 1 día es de más de 2000 €.


Análisis

Todos estos datos son llevados a un potente ordenador, aquí se grafican las energías de todos esos choques y rebotes. Son los llamados espectros. 
Pero aquí no acaba todo, ya que ahora viene la parte más difícil de todas: mediante distintos programas informáticos, hacemos una gráfica 'teórica' del espectro. En ese programa introducimos las sustancias que hemos usado de muestra, con sus porcentajes en masa de cada elemento. El programa simula lo que debería haber salido experimentalmente:

Diagrama de los rebotes y las energías de estos
Construcción de un espectro

Espectro correspondiente al Aluminio
Los puntitos negros son los rebotes experimentales. La línea roja, lo que teóricamente debería haber salido.

El proceso de análisis de gráficas pude llevar horas y horas. Pude ser que algún elemento se haya oxidado, y salgan líneas en la gráfica que no deberían estar. 
Finalmente, cuando la línea teórica coincide con la real, podemos afirmar que hemos acabado nuestro trabajo.

Conclusión

El trabajo en un acelerador es muy variado. En el ejemplo de los lineales, se analizan muestras haciendo rebotar partículas en ellas. Con esos rebotes construimos una gráfica. Si la teórica coincide con la experimental, ya sabemos de qué está hacha nuestra muestra. Si no coincide, debemos modificar valores para ajustarla, ya que pueden haber reaccionado elementos, puede haber impurezas...

Durante esa semana que estuve en el acelerador, te acabas dando cuenta que ser científico no es estar en un laboratorio mezclando cosas, sino que es un trabajo laborioso, metódico y difícil. Trabajar como científico es duro, pero cuando consigues algo te das cuenta de que ese duro trabajo ha merecido la pena

Si te ha interesado el tema, en este enlace podrás ver un esquema del funcionamiento del acelerador, hecho por unos amigos y yo en el siguiente enlace: Prezi.

¿Qué pasaría si metemos la mano en un acelerador de partículas? 

La respuesta la encontrarás aquí: Peligros de un acelerador de partículas.

Cualquier duda, por favor, deja un comentario. La semana que viene volveré con un nuevo tema.
¡HASTA LA SEMANA QUE VIENE!