Language

Mostrando entradas con la etiqueta átomos. Mostrar todas las entradas
Mostrando entradas con la etiqueta átomos. Mostrar todas las entradas

lunes, 28 de julio de 2014

La expansión del Universo

En las primeras décadas del siglo XX ya se conocían muy bien los espectros de emisión de los diferentes elementos. Un espectro de emisión es el conjunto de longitudes de onda que emite un elemento cuando uno de sus electrones disminuye de orbital, tal y como podéis recordar en mi entrada sobre las Auroras Polares.

Podemos imaginar que un electrón de un átomo es un libro. Podemos subirlo de estante o bajarlo, y al hacerlo, emite o absorbe energía. Un ejemplo son los fuegos artificiales de colores, hechos con elementos cuyos espectros se corresponden con los colores de la pirotecnia.

El color verde se consigue gracias al Bario

En esta página encontraréis los espectros de todos los elementos de la tabla periódica.

Como el Sol está formado por diversos elementos, si descomponemos su luz en colores podremos obtener en qué longitudes emite y por tanto sus elementos constituyentes, ya que cada elemento emite unas longitudes de onda correspondientes y bien definidas, tal y como establece el modelo atómico de Bohr.

Lo que hizo Edwin Hubble en la primera mitad del siglo XX es comparar el espectro del Sol (el Sol ni se aleja ni se acerca de nosotros) con el de un tipo especial de estrellas llamadas cefeidas. Estas estrellas tienen un brillo característico y regular, como un faro. Si conocemos su brillo, podemos saber la distancia a la que se encuentra, porque cuanto más lejos esté, menos brillará. 


La luz que emite el Sol es la de la izquierda, y la de una cefeida, la de la derecha. Se puede observar que las líneas negras están más hacia arriba en la cefeida que en el Sol, el conocido corrimiento al rojo. Esto, tal y como vimos en la entrada del Efecto Doppler, significa que esa cefeida se aleja de nosotros, al igual que la galaxia que la contiene. Como se aleja, las ondas que nos llegan de ella cada vez recorren más espacio, lo que se traduce como un aumento de la longitud de onda, que es lo que vemos comparando los espectros.

Hubble comparó el espectro de muchas cefeidas con el del Sol, y desarrolló la famosa ley de Hubble. Esta ley dice que cuanto más lejos está una galaxia, más rápidamente se aleja de nosotros. La desarrolló viendo cómo cambiaban los espectros entre unas cefeidas más cercanas y otras más lejanas, ya que el grado de corrimiento al rojo es proporcional a la distancia que nos separa de la cefeida.

En términos matemáticos, la ley dice que D = v/H, donde D es la distancia, v la velocidad de alejamiento y H es la constante de Hubble (H = 2,5·10E-18 Hz). Esa fórmula implica que cuanto más lejos está la galaxia, más rápido se aleja.

Y lo más importante es que todas las galaxias se alejan las unas de las otras entre sí, igual que los puntitos del globo de la imagen de abajo cuando la niña lo infla:


Cuando Hubble descubrió que el Universo se expandía aceleradamente, surgieron bastantes cuestiones: ¿Qué hace que se expanda? Y si cada vez es más grande, antes debió ser más pequeño. ¿Qué hubo al principio? ¿Cómo será el fin de nuestro Universo? 

Todas estas cuestiones las intentan responder los físicos cada día en laboratorios, aceleradores de partículas como el CERN o mediante la física teórica. Hablaremos de ellos en entradas posteriores. 

Para conocer más sobre cómo sabemos que el Universo está expansión, visita la entrada del Efecto Doppler Relativista.

Un saludo!

sábado, 15 de febrero de 2014

Auroras Polares

¡Buenas amigos!
Después de mucho pensar, he decidido hablar hoy sobre las auroras, tanto boreales como australes. Antes de empezar con semejante fenómeno, recordemos algunos conceptos que nos serán de utilidad.

1. Campo magnético terrestre.



Al usar una brújula, podemos saber dónde está el Norte y el Sur. Esto se debe a que la Tierra funciona como un gigantesco imán, pero...¿por qué?
En el interior de nuestro planeta, entre los 3000 y los 5000 km aproximadamente, encontramos el núcleo externo, formado por metales pesados como hierro (Fe) o níquel (Ni). Las altas temperaturas hacen que estos metales se encuentren fundidos. 
Corte de la Tierra en capas y sus profundidades



Además, estos flujos que están en movimiento, crean el llamado Efecto Dinamo (como cuando giramos la manivela de las linternas recargables, generamos energía eléctrica a partir de un campo magnético producido por una dinamo). Ese movimiento es lo que se cree hoy en día que produce el campo magnético terrestre. Sin él, como luego veremos, no habría vida en nuestro planeta. 

La Magnetosfera actúa como escudo ante los rayos cósmicos dañinos que proceden del Sol. Tiene un grosor de 60.000 Km en la dirección Tierra-Sol, y de 300.000 Km en sentido contrario, como vemos en la imagen inferior:

Representación de la magnetosfera como escudo ante la radiación solar

Sin la presencia de esta capa de protección, los rayos cósmicos más energéticos destruirían la atmósfera y con ella toda la vida en la Tierra. La vida en la Tierra se debe a la Magnetosfera, sin ella la vida tal y como la conocemos no sería posible.

2. Ionización y plasma.

Cuando excitamos a un átomo con una determinada energía, los electrones de su corteza "suben de nivel". Este proceso necesita energía. En cambio, cuando un electrón baja de nivel, desprende energía. La energía absorbida o desprendida es la diferencia de energías entre las capas inicial y final. Se desprende y absorbe en forma de onda electromagnética (infrarrojos, microondas, ultravioleta, rayos X, gamma...). En esta entrada nos centraremos en la parte del espectro de la luz visible, lo que provoca las auroras. Volviendo al tema de la llamada ionización de un átomo, esta se consigue al suministrar energía para que sus electrones consigan arrancarse del núcleo, como vemos en esta representación:

El electrón absorve un fotón y asciende de orbital
Electrón absorbe fotón: el átomo se ioniza (positivamente).
Pero hay un problema: el átomo tiende a estar en su estado de mínima energía, es decir, no ionizado. Si dejamos de suministrar energía, el átomo vuelve a su estado fundamental desprendiendo la energía que habíamos suministrado para ionizarlo. Es por eso por lo que es necesario el aporte continuo de energía para poder conseguir ese cuarto estado de la materia: el plasma. El plasma no es más que aquel estado de agregación posterior al gas, donde los electrones se separan de los núcleos por el aporte continuo de energía. Cuando este cesa, el plasma se disgrega. 

En la imagen vemos el desprendimiento de energía al descender de órbita el electrón:

El electrón disminuye de Ep y libera un fotón
Se emite un fotón, igual al de la foto anterior.
Este proceso lo estamos viendo constantemente. Un claro ejemplo es un mechero: el fuego no es más que plasma. Los átomos del aire absorben la energía que desprende la reacción de combustión del gas del mechero, ionizándose. Al volver a su estado fundamental, emiten esa diferencia de energía en forma de luz visible, y esa es la razón por la que existe el fuego. También en las luces de Neón ocurre algo similar, donde la ionización se realiza mediante una corriente eléctrica. Por si aún hay dudas, en este breve vídeo se explica bastante bien el concepto:


En la entrada sobre la expansión del Universo también hablábamos de cómo se relacionan las emisiones de cada elemento con el Efecto Doppler y como Hubble descubrió que el universo se expandía.

3. Auroras

Bien, con todo lo que ya sabemos ha llegado el momento de explicar cómo ocurren las auroras. Partículas cargadas procedentes del Sol son atrapadas por nuestra ionosfera. Al reaccionar con los rayos ionizantes también procedentes del Sol, estas partículas se ionizan, y como hemos visto antes, emiten luz. Así son las auroras, son emisiones de luz de un plasma formado por partículas provenientes del Sol o de nuestra propia atmósfera, que pierden electrones y al ganarlos emiten esos bellos colores. 
Por ejemplo, el oxígeno emite el color verde, el nitrógeno el azul o rojo...(hablamos de las emisiones de ondas de la franja visible. A parte de colores, emiten ondas que no somos capaces de ver con nuestros ojos).

Radiación electromagnética del plasma de la magnetosfera en el polo norte
Aurora boreal
Radiación electromagnética procedente del plasma de la magnetosfera en el polo sur
Aurora austral
Ya sabemos cómo se producen las auroras, ¿no? Pero aún falta algo más...

¿Por qué solo hay en los polos?

Para responder a esta pregunta, observemos cómo se comportan las ralladuras de hierro frente a un imán:

Ralladuras de hierro frente a un imán y su distribución en líneas de campo.
Ralladuras de hierro con un imán
Podemos observar las líneas de campo que se forman, y vemos que estas son más densas cerca de los polos, y a medida que nos alejamos de ellos hay menos virutas de hierro. 
Supongamos ahora que las virutas de hierro son ahora las partículas cargadas de las que hablamos antes. Estas se concentrarán en los polos norte y sur magnético de la Tierra. Esta es la explicación de por qué las auroras se localizan en los polos. Llamamos auroras boreales a las del polo Norte (Sur magnético) y auroras australes a las del polo Sur (Norte magnético). Os dejo un pequeño vídeo sobre una preciosa aurora boreal en Noruega: 



Espero sinceramente que os haya parecido interesante esta entrada. Compartidla para difundir algo de saber sobre un tema como tal, y comentad con dudas, sugerencias...

Un saludo,
¡HASTA OTRA! :D