Language

Mostrando entradas con la etiqueta fotoeléctrico. Mostrar todas las entradas
Mostrando entradas con la etiqueta fotoeléctrico. Mostrar todas las entradas

viernes, 11 de julio de 2014

Crear materia a partir de luz

Sí, parece raro afirmar que a partir de algo sin masa como es la luz, podamos crear materia...

Recordando lo dicho en mi última entrada, la energía y la masa son magnitudes muy relacionadas. La ecuación simplificada que utilizaremos para ejemplificar esta situación es:


En la ecuación superior, la E hace referencia a la energía, la m a la masa y la c a una constante que es la velocidad de la luz en el vacío (aprox. 300.000.000 m/s).

Para una 'pequeña' masa de 1 kg, equivaldría una energía de 90.000.000.000.000.000 Julios, es decir, que si lográsemos transformar un solo kilo de masa en energía podríamos mantener encendida una bombilla convencional de 50W durante 57 millones de años...imagínate la energía que produce el Sol transformando cada segundo 4 millones de toneladas de materia en energía mediante la fusión nuclear. 

Más increíble aún, con la masa de un grano de arroz transformada íntegramente en energía, podríamos hacer que un coche de 1000 kg que está parado acelere hasta unos supuestos 420.000 km/h (hipotéticamente, ya que violaría la Teoría de la Relatividad de Einstein), o que un camión cargado con mil coches acelerara hasta 1000 km/h...y sólo con un grano de arroz...

Otro ejemplo es una bomba atómica, mediante la cual con pequeñas masas se pueden crear energías devastadoras. Einstein nos dejó una ecuación, conocimiento, pero no la forma de transformar materia en energía o viceversa.

El ejemplo de la bombilla y el del grano de arroz son solamente ejemplos. Hoy en día no sabemos cómo transformar la masa en energía útil con esas finalidades.

A lo largo del siglo XX numerosos físicos han tenido ideas sobre cómo hacerlo, algunas de las cuales se reflejan en los siguientes diagramas de Feynman (representaciones simbólicas de interacciones cuánticas):


Las más conocidas son la aniquilación de Dirac (donde un electrón y su antipartícula, el positrón, se aniquilan formando energía) y el efecto fotoeléctrico (donde un haz de fotones "arranca" electrones en una placa metálica, base teórica de la energía fotoeléctrica).

Los físicos Breit y Wheeler encontraron teóricamente que realizando el proceso inverso a la aniquilación de Dirac, se podrían generar electrones y positrones a partir de fotones muy energéticos. Hasta la actualidad, la tecnología no ha sido suficiente para demostrar su teoría, pero el pasado mes se logró idear el escenario necesario para tal experimento. ¿En qué consiste?

Primero, mediante un acelerador de partículas (un importante candidato sería el CERN de Ginebra), se aceleraría a velocidades próximas a la de la luz a un haz de electrones, que se harían colisionar contra oro para generar fotones muy energéticos. Después, harían incidir un rayo láser de alta energía contra una cavidad de oro para obtener temperaturas semejantes a las del Sol. Al igual que un hierro incandescente cambia de color al calentarse, la cavidad de oro a tan alta temperatura emitirá fotones muy energéticos, que se harían colisionar con el grupo anterior y así generar pares de electrones/positrones. La cavidad de oro funcionaría como un cuerpo negro, que emite ondas electromagnéticas a una frecuencia relacionada con su temperatura.

En todo momento se cumple que la energía total permanece constante, porque según la fórmula E=mc2, la energía de esos fotones ahora equivale a la masa del electrón más la del positrón.

Puede que en pocos años pueda realizarse este experimento, junto con la creación de grandes colisionadores de fotones. También puede que sea un paso más hacia la fusión fría, una rama de la física y de la tecnología que solventaría los problemas mundiales de energía.

Un saludo, espero que haya sido interesante.
Gabriel.

martes, 25 de febrero de 2014

Física Cuántica y la 'Doble Ranura'

¡Buenas amigos!
Como prometí la semana pasada, hoy os traigo una extensión de mi entrada anterior, la cual os recomiendo leer antes para entender con claridad la de hoy: La Ciencia como nunca: 'La doble ranura'

Una vez entendido todo lo anterior, vamos a ver qué pasa cuando en vez de lanzar canicas o bolitas por las ranuras, lanzamos electrones. Al ser partículas, cabe esperar que se formen dos franjas, ¿no? Pero como ya intuiréis, no va a ser así. Al bombardear con electrones, ¡se forma un patrón de interferencia como en las ondas!

Esto ocurre básicamente porque la materia también puede tener función de onda, inversamente proporcional a su masa. Cuanto más masa posea una partícula, menos se comportará como una onda. Los electrones tienen una masa insignificante, por eso tienen función de onda, aunque pequeña. Nosotros mismos funcionamos también como onda, pero al tener una masa 'infinitamente' mayor, ese comportamiento ondulatorio es insignificante, por no decir 0.

Esta es la pantalla donde se registraron esos electrones cuando pasaban por la doble ranura:

Experimento de la Doble Ranura aplicado a electrones.
Pantalla donde podemos ver el patrón de interferencia formado por los electrones


El experimento ha sido realizado varias veces a lo largo de la historia. Primero creyeron que se trataba de un error: pensaban que los electrones rebotaban entre ellos y por eso parecía que quedaban en forma de interferencia. Repitieron el experimento lanzando electrón a electrón y vieron que seguía ocurriendo lo mismo.

Intentando demostrar esto mediante las matemáticas, llegaron a la conclusión de que el electrón debía pasar por las dos rendijas a la vez, pero ¿cómo es esto posible?

Entonces decidieron poner detectores en las rendijas para comprobar si era verdad esto. Misteriosamente, ahora ¡cada electrón iba por una rendija y no por las dos!, y en la pantalla se formaban dos franjas...increíble, ¿no?

Cuando no miramos a los electrones por donde van, se comportan como ondas. Cuando queremos observarlos para conocer su trayectoria, ocurre algo y dejan de funcionar ondulatoriamente y se comportan como partículas.

La razón cuántica de este fenómeno lo explica el Principio de Superposición. Básicamente nos dice que una partícula, en este caso el electrón, puede poseer para una determinada magnitud (en este caso posición) todas sus posibilidades. Al ser medidos u observados, se dice que la superposición se colapsa, y solo observamos una de todas las posibilidades. Un ejemplo podría ser el siguiente: Al cojer una carta de una baraja y ponerla boca abajo sin mirarla, según el sentido común es una sola carta, ¿no? Pero según este principio, cuando no la miramos se están dando todas las posibilidades: ¡SON LAS 40 CARTAS A LA VEZ! Una vez que miramos la carta, se colapsa la superposición y se eliminan 39 posibilidades. Solo queda la carta que vemos. Erwin Schrödinger propuso una paradoja para entender esta teoría, la cual puedes leer en el siguiente enlace: El Gato de Schrödinger. Una curiosa frase pronunciada por el físico británico S. Hawking fue "Cada vez que escucho hablar de ese gato, empiezo a sacar mi pistola".

Básicamente eso es lo que ocurre en el experimento con los electrones. El electrón pasa por las dos ranuras al mismo tiempo, como ocurría con las ondas. De este modo, se formaría el patrón de interferencia. Para acabar, os recomiendo ver este vídeo que explica muy bien y resume el contenido de esta entrada:


Puede parecer que todo esto es mentira porque no encaja dentro de nuestro sentido común, pero hay muchos experimentos reales que se basan en este principio, y que son muy curiosos porque la materia se comporta de modo muy extraño. Es más, absolutamente TODOS los experimentos para poner a prueba la Teoría Cuántica han funcionado.

Este Principio de Superposición tiene mucho que ver con el Efecto Zenón Cuántico, el cual puedes leer en el siguiente enlace: Zenón Cuántico. Básicamente explica que podemos modificar un experimento cuántico con el simple hecho de observarlo. Uno muy curioso fue realizado en 1990 en el Instituto tecnológico de Colorado. Consistía en observar el nivel de energía de los electrones en unos miles de iones de berilio. Desde que los electrones se encontraban en su estado fundamental (mínima energía), hasta su máxima energía, pasaban 256 milisegundos. Mediante microondas excitaban esos electrones, y al cabo de esos 256 milisegundos, el 100% de los iones se encontraban en el nivel superior de energía. Al realizar la medición en la mitad del proceso, y después al final, resultó que solo el 50% de los iones se encontraron excitados. Esto se debe a que el electrón no se puede encontrar entre medias: solo existen dos posibilidades, o arriba o abajo (modelo atómico de orbitales). Si no medimos entre medias, siempre los encontraremos arriba; pero si medimos a medias del experimento, dado que no los podemos ver a mitad de camino, unos irán hacia arriba y otros hacia abajo. Esa es la razón por la cual solo el 50% de los iones se encontraban en ese estado. Este experimento fue otro argumento a favor de la Mecánica Cuántica.

Os recomiendo los libros 'La Puerta de los Tres Cerrojos' y 'Desayuno con Partículas', ambos de Sonia Fernández Vidal, una importante divulgadora científica especializada en Mecánica Cuántica. En sucesivas entradas hablaré del Efecto Fotoeléctrico, la otra cara de la moneda, la parte corpuscular de las radiaciones electromagnéticas.

Gracias por echar un vistazo a esta entrada,
Un Saludo para todos!
Hasta la Próxima!