Language

Mostrando entradas con la etiqueta Euler. Mostrar todas las entradas
Mostrando entradas con la etiqueta Euler. Mostrar todas las entradas

domingo, 1 de mayo de 2016

El número $e$

A principios del siglo XVII el matemático John Napier introdujo los logaritmos en el Cálculo, y fue el primero en mencionar el número $e$. Posteriormente, Huygens se percató de la relación entre este número y el área bajo la curva $xy=1$. Años más tarde, Jacob Bernouilli encontró que el número $e$ es el límite de la sucesión inferior, que es actualmente su definición.

$\left(1+\displaystyle\frac{1}{n}\right)^n$

Esta sucesión es muy importante en el cálculo del interés compuesto. Además, el número $e$ se define frecuentemente de las siguientes formas:

$e:=\displaystyle\lim_{n\to\infty}{\left(1+\displaystyle\frac{1}{n}\right)^n}=\displaystyle\lim_{n\to\infty}{\left(1+\displaystyle\frac{1}{n-1}\right)^n}$

$e:=\displaystyle\sum_{n=0}^{\infty}{\frac{1}{n!}}$ 

$\displaystyle\int_1^e{\frac{dt}{t}}=1$

El número $e$ aparece en infinidad de sitios, como la geometría, los números complejos, la estadística, etc. En la entrada de hoy demostraremos que $e$ es un número trascendente e irracional.



Irracionalidad



Un número irracional es aquel que no puede ser expresado de la forma $a/b$ con $a,b \in \mathbb{Z}$. Supongamos pues que $e$ es racional para después llegar a un absurdo.

Sea $e=\displaystyle\frac{a}{b}$ con $a,b \in \mathbb{Z}$. Se define el siguiente número:

$x=b!\left(e-\displaystyle\sum_{n=0}^b{\frac{1}{n!}}\right)=a(b-1)!-\displaystyle\sum_{n=0}^b{\frac{b!}{n!}}\in Z$ pues $n<b$.

Finalmente probaremos que $0<x<1$:

Haciendo un desarrollo de Taylor de la función $e^x$ se puede llegar a que $e=\displaystyle\sum_{n=0}^{\infty}{\frac{b!}{n!}}$, de modo que considerando nuestra definición de $x$:

$x=\displaystyle\sum_{n=b+1}^{\infty}{\frac{1}{n!}}>0$

Observando que  $\displaystyle\frac{b!}{n!}=\frac{1}{n(n-1)\cdot...\cdot (b+1)}<\frac{1}{(b+1)^{n-b}}$ y definiendo $k=n-b$ se tiene que 

$x<\displaystyle\sum_{n=b+1}^{\infty}{\frac{1}{(b+1)^{n-b}}}=\displaystyle\sum_{k=1}^{\infty}{\frac{1}{(b+1)^{k}}}=\displaystyle\frac{(b+1)^{-1}}{1-(b+1)^{-1}}=\displaystyle\frac{1}{b}\leq 1$

Por tanto queda probado que $0<x<1$, pero como se probó que $x\in\mathbb{Z}$ y no hay enteros en $(0,1)$ se llega a contradicción, luego la hipótesis de que $e$ es racional es falsa, y por tanto $e$ es un número irracional.


Trascendencia



Un número trascendente es aquel que no es raíz de ningún polinomio con coeficientes enteros, es decir, si $\alpha$ es trascendente, entonces no existen $a_0,a_1,...,a_n\in\mathbb{Z}: p(\alpha)=a_0+a_1\alpha+...+a_n\alpha^n=0$. Por ejemplo, el número áureo $\phi$ es algebraico pues es solución de la ecuación $x^2-x-1=0$.

Supongamos que existe un polinomio $p(x):=a_0+a_1x+...+a_nx^n$ con coeficientes enteros y $e$ es una de sus raíces. Se definen las funciones $f(x)$ y $F(x)$ del siguiente modo:

$\phi (x):=\displaystyle\frac{x^{p-1}}{(p-1)!}\prod_{i=1}^m{(x-i)^p}$

$\Phi (x):=\displaystyle\sum_{i=0}^{mp+p-1}{\phi^{i)}(x)}$

Donde $p$ es un número primo. De las definiciones superiores se sigue que $\Phi (x)-\Phi '(x)=\phi(x)$, pues $\phi^{mp+p)}(x)=0$. Entonces es claro que 

$\displaystyle\frac{d}{dx}(e^{-x}\Phi (x))=-e^{-x}\Phi (x)+\Phi '(x)e^{-x}=-\phi (x)e^{-x}$

Multiplicando por un coeficiente del polinomio $a_j$e integrando en $(0,j)$ la expresión anterior:

$a_j\displaystyle\int_0^j{e^{-x}\phi (x)} \  dx=a_j\left[e^{-x}\Phi (x)\right]_j^0=a_j\Phi (0)-a_je^{-j}\Phi (j)$

Y multiplicando por $e^j$ y sumando obtenemos:

$\displaystyle\sum_{j=0}^m e^ja_j\displaystyle\int_0^j{e^{-x}\phi (x)} \  dx=\displaystyle\sum_{j=0}^me^ja_j\Phi (0)-\displaystyle\sum_{j=0}^ma_j\Phi (j)=-\displaystyle\sum_{j=0}^ma_j\sum_{i=0}^{mp+p-1}\phi^{i)}(j)$

Ya que  $\displaystyle\sum_{j=0}^me^ja_j\Phi (0)=0$ según definimos $p(x):=\displaystyle\sum_{j=0}^m{a_jx^j}$ con $a_j\in\mathbb{Z}$. Nuestro objetivo es mostrar que la igualdad inferior no es cierta para un primo $p$ arbitrario.

$\displaystyle\sum_{j=0}^m e^ja_j\displaystyle\int_0^j{e^{-x}\phi (x)} \  dx=-\displaystyle\sum_{j=0}^ma_j\sum_{i=0}^{mp+p-1}\phi^{i)}(j)$

En efecto, considerando el segundo término de la ecuación superior vemos que se trata de un entero no nulo no divisible por $p$, pues los términos no nulos del sumatorio son aquellos que se han derivado al menos $p$ veces ya que existe el factor $(x-j)^p$. En dichos casos, fijándonos en la definición de $\phi (x)$, $\displaystyle\sum_{j=0}^ma_j\sum_{i=0}^{mp+p-1}\phi^{i)}(j)$ es múltiplo de $p$. Existe un caso en que $\phi^{i)}(j)$ no es múltiplo de $p$, cuando $j=0$ e $i=p-1$. En ese caso es evidente que el valor de la función es $\phi^{p-1)}(0)=(-1)^p\cdot ... \cdot (-m)^p$. Escogiendo un $p$ arbitrariamente grande (mayor que $m$) es claro que dicho producto no tiene a $p$ como factor primo, luego $\displaystyle\sum_{j=0}^ma_j\sum_{i=0}^{mp+p-1}\phi^{i)}(j)$ es un numero entero no nulo y no divisible por $p$.

Por otra parte,  para valores positivos de $t$ tales que $t\leq m$ es claro que $\left|\phi (t)\right|\leq\displaystyle\frac{m^{mp+p-1}}{(p-1)!}$ y $0\leq\left|e^{-x}\phi (t)\right|\leq\left|\phi (t)\right|$ de modo que podemos realizar la siguiente acotación:

$0\leq\displaystyle\sum_{j=0}^ma_je^j\int_0^j{e^{-x}\phi (x)} \ dx\leq\sum_{j=0}^ma_je^j\int_0^j{\frac{m^{mp+p-1}}{(p-1)!}}=\displaystyle\sum_{j=0}^m{a_je^j\frac{jm^{mp+p-1}}{(p-1)!}}$

Finalmente notamos que $\displaystyle\lim_{p\to\infty}\displaystyle\sum_{j=0}^m{a_je^j\frac{jm^{mp+p-1}}{(p-1)!}}=0$ por la fórmula de Stirling: $n!\sim n^ne^{-n}\sqrt{2\pi n}$. Por tanto existe algún número primo $p>0$ tal que

$\displaystyle\sum_{j=0}^m e^ja_j\displaystyle\int_0^j{e^{-x}\phi (x)} \  dx\neq -\displaystyle\sum_{j=0}^ma_j\sum_{i=0}^{mp+p-1}\phi^{i)}(j)$

Y habiendo llegado a una contradicción, es claro y evidente que $e$ es un número trascendente. Por tanto hemos concluido con la demostración de irracionalidad y trascendencia del número $e$. 

Quod erat demonstrandum.


Por último mencionar que la demostración sobre la trascendencia es del matemático francés Charles Hermite.


Bibliografía







Puedes leer también la entrada de este mismo blog sobre la igualdad de Euler.



domingo, 10 de abril de 2016

El problema de Basilea

A mediados del siglo XVII, Jakob Bernouilli popularizó un problema matemático: calcular la suma de los inversos de los cuadrados perfectos. En términos de la función $\zeta$ de Riemann, el problema era hallar $\zeta(2)$. Muchos fueron los que lo intentaron resolver, pero el primero de ellos fue el matemático Leonhard Euler en 1735.

$\zeta(2)=\displaystyle\sum_{i=1}^{\infty}{\displaystyle\frac{1}{n^2}}=\displaystyle\frac{\pi^2}{6}$

Ciudad de Basilea

En la entrada de hoy se mostrarán algunas de las demostraciones de la solución del problema de Basilea, entre ellas la de Euler.


Demostración 1: Euler

 

Haciendo un desarrollo en serie de Taylor se obtiene:

$\sin x=x-\displaystyle\frac{x^3}{3!}+\displaystyle\frac{x^5}{5!}-\displaystyle\frac{x^7}{7!}+...$

Y dividiendo entre $x$:

$\displaystyle\frac{\sin x}{x}=1-\displaystyle\frac{x^2}{3!}+\displaystyle\frac{x^4}{5!}-\displaystyle\frac{x^6}{7!}+...$

Ahora llega el punto más delicado de la demostración y el que le reprocharía Bernouilli: poner dicha suma como producto infinito de factores. Notando que las respectivas raíces del seno son los múltiplos enteros de $\pi$, Euler escribió:

$\displaystyle\frac{\sin x}{x}=\left(1-\displaystyle\frac{x}{\pi}\right)\left(1+\displaystyle\frac{x}{\pi}\right)\left(1-\displaystyle\frac{x}{2\pi}\right)\left(1+\displaystyle\frac{x}{2\pi}\right)...=\left(1-\displaystyle\frac{x^2}{\pi^2}\right)\left(1-\displaystyle\frac{x^2}{4\pi^2}\right)...$

Ya que si $x=n\pi \Longrightarrow \displaystyle\frac{x}{n\pi}=1$ con $n=\pm 1, \pm 2,...$

Haciendo el producto de los infinitos términos, uno se da cuenta de que el coeficiente de $x^2$ es precisamente:

$-\displaystyle\frac{1}{\pi^2}\zeta(2)$

Teniendo en cuenta que el polinomio de Taylor es único (Teorema de Taylor), es claro y evidente que el coeficiente en el desarrollo en serie tiene que ser equivalente al coeficiente obtenido en la ecuación superior. Por tanto igualándolos obtenemos finalmente el valor de la serie infinita:

$\zeta(2)=\displaystyle\sum_{i=1}^{\infty}{\displaystyle\frac{1}{n^2}}=\displaystyle\frac{\pi^2}{6}$



Demostración 2

 

Esta segunda demostración se basa en el Criterio del Sándwich: trataremos de acotar $\zeta(2)$ entre dos valores que tiendan ambos al valor que buscamos. Para ello consideramos que por la fórmula de Moivre en el álgebra compleja:

$\displaystyle\frac{\cos (nx)+i\sin (nx)}{(\sin x)^n}=(\cot x+i)^n=\displaystyle\sum_{j=0}^n{{n\choose j} i^j\cot^{n-j}{x}}$

Sabiendo el valor de las diferentes potencias de la unidad imaginaria $i$ llegamos a:

$\displaystyle\frac{i\sin (nx)}{(\sin x)^n}=i\left[{n\choose 1}\cot^{n-1}{x}-{n\choose 3}\cot^{n-3}{x}+...\right]$

Definiendo $n=2m+1$ con $m$ entero positivo y $x=r\pi/(2m+1)$ con $r=1,2,...,m$  vemos que:

$0={2m+1 \choose 1}\cot^{2m}{x}-{2m+1 \choose 3}\cot^{2m-2}{x}+...+(-1)^m$

Al ser la cotangente biyectiva (one to one) en $[0,\pi/2]$, las distintas raíces $x=r\pi/(2m+1)$ son diferentes para cada valor de $r$. Esto nos sirve para definir el polinomio $p(t)$ de la siguiente guisa:

$p(t):={2m+1 \choose 1}t^m-{2m+1 \choose 3}t^{m-1}+...+(-1)^m$

Puesto que $\tan x>x>\sin x$, es evidente pues que

$\csc^2 x>1/x^2>\cot^2 x \Longrightarrow \displaystyle\sum\csc^2 x\geq\zeta(2)\geq\displaystyle\sum\cot^2 x $

La suma $\displaystyle\sum^m\cot^2 x$ equivale a la suma de las raíces de $p(t)$, que por álgebra elemental equivale al cociente entre el coeficiente de $t^{m-1}$ entre el de $t^m$ cambiado de signo. Entonces

$\displaystyle\sum^m\cot^2 x=\displaystyle\frac{{2m+1 \choose 3}}{{2m+1 \choose 1}}=\displaystyle\frac{(2m)(2m-1)}{6}$

Y fijándonos en que $\csc^2 x=1+\cot^2 x$ entonces

$\displaystyle\sum^m\csc^2 x=\displaystyle\frac{{2m+1 \choose 3}}{{2m+1 \choose 1}}+m=\displaystyle\frac{(2m)(2m+2)}{6}$

Y por el principio del sándwich, ya que $x=r\pi/(2m+1)$,

$\displaystyle\lim_{m\to\infty}\displaystyle\frac{(2m)(2m+2)}{6}\geq \displaystyle\sum_{r=1}^{\infty}{\displaystyle\frac{(2m+1)^2}{\pi^2r^2}}\geq\displaystyle\lim_{m\to\infty}\displaystyle\frac{(2m)(2m-1)}{6}$

Multiplicando todo por $\left(\displaystyle\frac{\pi}{2m+1}\right)^2$

$\displaystyle\lim_{m\to\infty}\displaystyle\frac{(2m)(2m+2)}{6}\left(\displaystyle\frac{\pi}{2m+1}\right)^2\geq\zeta(2)\geq\displaystyle\lim_{m\to\infty}\displaystyle\frac{(2m)(2m-1)}{6}\left(\displaystyle\frac{\pi}{2m+1}\right)^2$

Y como a izquierda y derecha ambos límites son iguales y de valor $\pi^2/6$, se concluye que:

$\zeta(2)=\displaystyle\sum_{i=1}^{\infty}{\displaystyle\frac{1}{n^2}}=\displaystyle\frac{\pi^2}{6}$


Demostración 3

 

Fijándonos en que $\zeta(2)$ puede escribirse como suma de los inversos de los cuadrados de números pares más los impares, se llega a que:

$\zeta(2)=\displaystyle\sum_{n=0}^{\infty}{\displaystyle\frac{1}{(2n+1)^2}} + \displaystyle\sum_{n=1}^{\infty}{\displaystyle\frac{1}{(2n)^2}}=\displaystyle\sum_{n=0}^{\infty}{\displaystyle\frac{1}{(2n+1)^2}}+\displaystyle\frac{1}{4}\zeta(2)$

De modo que 

$\zeta(2)=\displaystyle\frac{4}{3}\displaystyle\sum_{n=0}^{\infty}{\displaystyle\frac{1}{(2n+1)^2}}$

Por otro lado

$\displaystyle\frac{1}{2n+1}=\displaystyle\int_0^1{x^{2n}} dx=\displaystyle\int_0^1{y^{2n}} dy$

Luego evidentemente

$\zeta(2)=\displaystyle\frac{4}{3}\displaystyle\sum_{n=0}^{\infty}{\displaystyle\int_0^1{x^{2n}} dx\displaystyle\int_0^1{y^{2n}} dy}=\displaystyle\frac{4}{3}\displaystyle\int_0^1\int_0^1{\sum_{n=0}^{\infty}{(xy)^{2n}}}dx dy$

Donde

$\displaystyle\sum_{n=0}^{\infty}{(xy)^{2n}}=\displaystyle\frac{1}{1-x^2y^2}$

Ya que $xy<1$. 

Por tanto el problema se ha reducido a calcular una integral doble que no resolveremos entera aquí, solo una parte:

$\displaystyle\int_0^1\int_0^1{\displaystyle\frac{1}{1-(xy)^2}dx \ dy}=\displaystyle\int_0^1{\displaystyle\frac{\sinh^{-1} x}{x}}=\displaystyle\frac{\pi^2}{8}$

según Wolfram Alpha, y por tanto es evidente que:

$\zeta(2)=\displaystyle\sum_{i=1}^{\infty}{\displaystyle\frac{1}{n^2}}=\displaystyle\frac{\pi^2}{6}$


Demostración 4

 

En este caso nos basaremos en la relación entre las funciones $\zeta(s)$ y $\Gamma(s)$. Considerando la integral $I(t,x)$ y haciendo el cambio $x\to x/t$ vemos que:

$I(x,t)=\displaystyle\int_0^{\infty}{x^se^{-tx} \ dx}=\displaystyle\int_0^{\infty}{\displaystyle\frac{x^s}{t^s}e^{-x}t^{-1} \ dx}=\displaystyle\frac{\Gamma(s+1)}{t^{s+1}}$

Luego

$\displaystyle\frac{\Gamma(s)}{t^s}= \displaystyle\int_0^{\infty}{x^{s-1}e^{-tx} \ dx}$

Haciendo el cambio $t\to n\in \mathbb{N}$ y sumando hasta infinito en ambos miembros:

$\Gamma(s)\zeta(s)=\displaystyle\int_0^{\infty}{x^{s-1}\displaystyle\sum{\left(e^{-x}\right)^n} \ dx}\Longrightarrow\Gamma(s)\zeta(s)=\displaystyle\int_0^{\infty}{\displaystyle\frac{x^{s-1}}{e^x-1}} \ dx$

En nuestro caso buscamos $s=2$. Sabiendo que $\Gamma(2)=1$, el problema se reduce a calcular la integral:

$\zeta(2)=\displaystyle\frac{1}{\Gamma(2)}\displaystyle\int_0^{\infty}{\displaystyle\frac{x \ dx}{e^x-1}}$

Que se puede calcular y arroja el esperado valor de $\displaystyle\frac{\pi^2}{6}$.

Si os interesa, en la bibliografía hay otras 14 maneras de calcular $\zeta(2)$.

Para valores impares de $s$, no se sabe demasiado de la función $\zeta(s)$. Esta función es básica en la Teoría de Números y se encuentra muy íntimamente relacionada con los números primos, con la función $\mu$ de Möbius, la función $\phi$ de Euler y otras funciones multiplicativas. 

Para valores pares de $s$, Euler fue capaz de encontrar una fórmula cerrada para $\zeta(s)$. Denotando $s=2k$ con $k\in \mathbb{Z}$ y $B_{2k}$ a los números de Bernouilli

$\zeta(2k)=\displaystyle\frac{(-1)^{k-1}(2\pi)^{2k}B_{2k}}{2(2k)!}$

De donde $\zeta(2)=\pi^2/6$, $\zeta(4)=\pi^4/90$, etc.


Finalmente quiero concluir esta entrada con una célebre cita de Gauss: "La Matemática es la Reina de las Ciencias, y la Teoría de Números es la Reina de la Matemática".

Bibliografía